Building Arrays of SensL Surface Mount Sensors on PCB

INTRODUCTION
This document focusses on the creation of close-packed arrays of SiPM sensors. It gives both general advice and describes the design and test of a 12x12 (144) pixel array using 3mm surface mount SiPM sensors. Primarily, the design was carried out to investigate the achievable pixel pitch and planarity when producing arrays using these devices. To evaluate the functionality of the array, it was decided to design the board to have the necessary output to be compatible with the Matrix readout system which allowed for performance testing of the array. Although the work here uses the MLP type of surface mount sensor package, all of the information applies equally to the creation of arrays using SensL TSV packaged parts.

1. SENSL SURFACE MOUNT PACKAGES
This document contains information necessary for the user to create close-packed, 1D or 2D arrays of SensL surface mount technology (SMT) compatible sensor packages; either the micro leadframe package (MLP) or through-silicon via (TSV) parts. The MLP products have a part number with the suffix “-SMT”, whereas the TSV packaged products are denoted by “-TSV”. Figure 1 below shows examples of each package type.

Figure 1, MLP parts (left) and TSV parts (right)
2. ARRAY BUILD CONSIDERATIONS

The following key parameters should be taken into account when assembling the MLP or TSV packaged sensors into an array, to ensure the best quality.

- Sensor storage
- Sensor handling
- Solder reflow conditions
- Board material
- Minimum component spacing
- Planarity

These factors are addressed individually below.

2.1 Sensor Storage

Both the MLP and TSV packaged surface mount sensors are moisture sensitive. Moisture can diffuse into the package from atmospheric humidity. Surface mount soldering of the packages to PCBs exposes the entire package body to temperatures of up to 260°C. Rapid expansion of trapped moisture during this process can result in package cracking, delamination of critical interfaces within the package or damaged bond wires. Therefore it is critical that sensors are stored carefully, with attention to the device moisture sensitivity level (MSL) and the packing date and storage conditions on the of the moisture barrier bag (MBB) that the parts are shipped in. The MSL levels and schematics of the MBB can be found in the Handling and Soldering Tech Note for either the MLP or the TSV:

- TSV Handling and Soldering Guide
- MLP Handling and Soldering Guide

The information in the following documents should also be consulted.

- IPC/JEDEC J-STD-020
- IPC/JEDEC J-STD-033
2.2 Sensor Handling

The user should be aware of the fact that the SiPM is a sensitive optoelectronic instrument and should always be handled as carefully as possible. Physical contact with the sensor should be minimized during assembly and in particular, care should be taken to avoid contact with abrasive materials.

There are three points in the manufacture process where the user should be aware of the potential for damage:

- **Pick and place** - automatic assembly directly from reels is recommended.
- **Singulation of the array from the PCB after reflow** - we recommend the use of a V-groove on the singulation tab to minimise the mechanical shock to the sensors.
- **Packing of the arrays for transport** - Manual handling of the arrays should be minimized. Arrays should not be stacked, but should be packed in a way that avoids contact between the parts during transport.

Further information on the handling of the MLP and TSV packaged sensors, including cleaning, is given in the Handling and Soldering Tech Notes:

- TSV Handling and Soldering Guide
- MLP Handling and Soldering Guide

2.3 Solder Reflow Conditions

MLP and TSV products must be mounted according to specified soldering pad patterns. Recommended solder footprints and pin-outs for each product are available in the CAD files, which are linked to in the product datasheets, e.g.:

- C-Series MLP datasheet
- J-Series TSV datasheet

Full reflow soldering information is given in the Handling and Soldering Tech Notes:

- TSV Handling and Soldering Guide
- MLP Handling and Soldering Guide

In addition, solder reflow conditions must be in compliance with J-STD-20, table 5.2. This is summarized in Figure 2. The number of passes should not be more than 2.

Recommended solder pastes are Multicore WS300 or Qualitek DSP 875 Type 5, which have been shown to avoid any potential voiding issues, as described further in section 3.2.2.
2.4 Board Material

There are no requirements for a particular board material. SensL use standard 1.6mm FR4 PCB.

2.5 Minimum Component Spacing

The MLP package has a tolerance of +0.05mm/-0.1mm, and the TSV package as a tolerance of ±0.05mm. Therefore, if the parts are placed with 0.1mm spacing there could be extreme cases where the components are touching. Figure 3 shows how the package tolerance results in a variable gap between the sensor components. Therefore, to ensure that there is always a minimum spacing of 0.1mm, a component spacing of 0.2mm is recommended.

Based on a spacing of 0.2mm the active areas of a 3mm MLP packaged sensor will be 1.2mm apart. This gives an array fill factor (for a 3mm part) of:

\[
\frac{(3.0)^2}{(4.2)^2} = 51\%
\]

For a 3mm TSV packaged part using a 0.2mm spacing, the active areas will be 0.29mm apart and the fill factor is:

\[
\frac{(3.07)^2}{(3.36)^2} = 84\%
\]

Note: The minimum spacing of 0.2mm is too small to allow re-work. Should the user wish to design an array that can be reworked, then a minimum of 0.5mm spacing is recommended.
2.6 Planarity

It is useful to know the flatness, or planarity, of the assembled sensor array, and can be used to assess the quality of array manufacture. To achieve the best planarity it has been found to be beneficial to hold the PCB in a rigid frame to avoid any warping due to the heat process.

The planarity is measured as the deviation from 2 diagonal points as a percentage of the diagonal measurement. For example, if two corners of a 30mm x 40mm board deviate by 0.2mm then the planarity is:

\[
\frac{0.2}{50} = 0.4\% \quad \text{(Diagonal of board is 50mm)}
\]

Ideally, planarity should be $< 0.5\%$.

Figure 3, Using a target component spacing of 0.2mm will result in a range of component spacings that depend on the tolerance of the package size. This is illustrated above for the MLP (left) and the TSV (right).
3. SENSL MLP ARRAY BUILD CASE STUDY

3.1 Electronics Design

A test array was created using SensL MLP packaged sensor parts. The array layout was designed to be compatible with the SensL Matrix System, that was used for evaluation of the constructed array.

Figure 4

Figure 4 shows one of 9 blocks designed to replicate the function of the 4x4 array used on the Matrix system detector head, with each element representing, in this case, a MicroFM-30035-SMT sensor. The 16 cathodes (N) of each 4x4 block of devices are connected together to create the 9 ARRAY signal lines. The corresponding anode (P) outputs of each 4x4 block of devices are connected together to create 16 PIXEL signal lines. The positive bias is applied to the ARRAY side of the device.

However, with alternative readout electronics, other routing of the signals is possible.
Figure 5 shows the ribbon cable connector and thermometer IC. This is identical to the circuit used for the Matrix System and hence the board is electrically identical to that of the Matrix System detector head.
3.2 Manufacturing The test array

Figure 6 shows the engineering CAD of the MicroFM-30035-SMT devices which was used for the test array. The MLP package is nominally a 4mm x 4mm square housing the SiPM die of 3.16mm x 3.16mm.

The manufacturing challenge for this project was two-fold:

1. **MLP Device Spacing** - manufacture a board with the devices as close as possible to ensure the best possible fill factor.

2. **Planarity** - manufacture the board with the best planarity possible.

Common practice is to ground any floating pins such as the NC pin (#4). Grounding the pin helps shielding and keeps noise interference from external sources (EMI/RF) down but it may also be left floating without issue. In the production of the PCBs discussed in this document, the NC pin was grounded.

In addition, it was ensured that the assembly of the array board took into account the MSL specifications of the devices.

The solder footprint shown in Figure 7 has been shown to work well for the 3mm MLP parts (e.g. MicroFM-30035-SMT) and was used for the test array. It consists of four square 1.4mm x 1.4mm pads arranged in a square with a pitch of 1.8mm between pad centres (0.4mm gap between pads). In general, links to the solder footprint for a given part can be found in the relevant product datasheet.
3.2.1 MLP Device Spacing

This MLP package has a tolerance of ±0.05mm. Therefore, a component spacing of 0.2mm was chosen. More details about minimum component spacing can be found in section 2.5.

3.2.2 Solder Paste

To avoid significant voiding under the MLP pads it was found to be important to use the correct type of solder paste. It was found that using a standard solder paste, such as the Qualitek DSP 875 Type3, resulted in significant solder voids formed under the MLP pads. This problem was resolved by using either of the following solder pastes:

- Multicore WS300 solder paste
- Qualitek DSP 875 Type 5

Figure 8 shows how voiding is significantly reduced by using the Qualitek DSP 875 Type 5 solder paste rather than the more standard Type 3 paste.
3.2.3 Planarity

The vendor used for the array assembly believed that a 1.6mm, 6-layer FR4 PCB would be acceptable providing good care was taken during the manufacturing process.

The planarity of the resulting array was found to be very much dependent on the process of soldering the devices to the board. It was observed by the vendor that during the re-flow process it was important to hold the boards in a rigid frame to avoid any warping due to the heat process. By designing a specific frame to hold the boards, less than 220μm warping diagonally from corner to corner was achieved with relative ease.

As the diagonal measurement of the board is 71mm (see Figure 9) this gives a planarity measurement of:

\[
\frac{0.22}{71} = 0.3\%
\]

This value is considered to be a good value for the planarity.

![Figure 9](image-url)

\[
\text{Length/Width} = (12 \times 4\text{mm}) + (11 \times 0.2\text{mm}) = 50.2\text{mm}
\]

\[
\text{Diagonal} = \sqrt{50.2^2 + 50.2^2} = 71\text{mm}
\]
3.3 Detailed Planarity Measurements

Prototype boards were manufactured, as shown in Figure 10 (sensor side) and Figure 11 (rear connector side).

To fully test the planarity, one of the samples was analyzed using a non-contact optical instrument specifically designed for this type of measurement.

The machine first takes the position of each corner of the board and from 2 diagonal lines it calculates the ideal plane.

The position of the surface of each sensor pixel is then measured and compared with the ideal plane. An example result from one of the prototype arrays is shown in Figure 12. It displays a value that tells you how close (+ or -) the device is from the ideal plane for each pixel.

For example:
- Pixel 111 is +0.005mm (5μm above the ideal plane)
- Pixel 80 is -0.013mm (13μm below the ideal plane)

Blue = +ve = ABOVE

Green = -ve = BELOW

The graph in Figure 13 shows the 144 values placed in 10μm bins from -100μm to +100μm.

The results show the range is -80μm to +60μm = 140μm.
SMT Array Design

TECH NOTE

<table>
<thead>
<tr>
<th>133</th>
<th>134</th>
<th>135</th>
<th>136</th>
<th>137</th>
<th>138</th>
<th>139</th>
<th>140</th>
<th>141</th>
<th>142</th>
<th>143</th>
<th>144</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.031</td>
<td>+0.004</td>
<td>+0.001</td>
<td>+0.011</td>
<td>-0.012</td>
<td>-0.001</td>
<td>-0.019</td>
<td>-0.018</td>
<td>+0.016</td>
<td>-0.005</td>
<td>-0.019</td>
<td>+0.016</td>
</tr>
<tr>
<td>+0.028</td>
<td>+0.029</td>
<td>+0.003</td>
<td>+0.001</td>
<td>+0.007</td>
<td>-0.017</td>
<td>-0.022</td>
<td>+0.020</td>
<td>+0.003</td>
<td>-0.004</td>
<td>+0.019</td>
<td>+0.027</td>
</tr>
<tr>
<td>+0.027</td>
<td>+0.019</td>
<td>+0.005</td>
<td>+0.000</td>
<td>-0.009</td>
<td>-0.016</td>
<td>+0.045</td>
<td>-0.014</td>
<td>-0.003</td>
<td>-0.006</td>
<td>+0.024</td>
<td>+0.032</td>
</tr>
<tr>
<td>+0.026</td>
<td>+0.026</td>
<td>+0.001</td>
<td>-0.006</td>
<td>-0.009</td>
<td>+0.034</td>
<td>-0.017</td>
<td>-0.017</td>
<td>+0.007</td>
<td>+0.012</td>
<td>+0.036</td>
<td>+0.037</td>
</tr>
<tr>
<td>+0.009</td>
<td>+0.013</td>
<td>+0.001</td>
<td>-0.009</td>
<td>+0.052</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.014</td>
<td>+0.015</td>
<td>+0.016</td>
<td>+0.034</td>
<td>+0.041</td>
</tr>
<tr>
<td>+0.033</td>
<td>+0.015</td>
<td>-0.002</td>
<td>+0.001</td>
<td>+0.003</td>
<td>-0.009</td>
<td>-0.016</td>
<td>-0.013</td>
<td>+0.014</td>
<td>+0.036</td>
<td>+0.031</td>
<td>+0.032</td>
</tr>
<tr>
<td>+0.024</td>
<td>+0.021</td>
<td>+0.005</td>
<td>+0.040</td>
<td>-0.005</td>
<td>-0.012</td>
<td>-0.012</td>
<td>-0.013</td>
<td>-0.006</td>
<td>+0.026</td>
<td>+0.028</td>
<td>+0.005</td>
</tr>
<tr>
<td>+0.009</td>
<td>+0.049</td>
<td>+0.008</td>
<td>-0.007</td>
<td>-0.013</td>
<td>-0.012</td>
<td>-0.015</td>
<td>-0.01</td>
<td>+0.013</td>
<td>+0.042</td>
<td>+0.026</td>
<td>+0.023</td>
</tr>
<tr>
<td>+0.029</td>
<td>-0.001</td>
<td>-0.011</td>
<td>-0.015</td>
<td>-0.026</td>
<td>-0.032</td>
<td>-0.026</td>
<td>-0.016</td>
<td>+0.002</td>
<td>+0.036</td>
<td>+0.023</td>
<td>+0.018</td>
</tr>
<tr>
<td>+0.018</td>
<td>+0.024</td>
<td>+0.001</td>
<td>+0.043</td>
<td>-0.005</td>
<td>-0.012</td>
<td>-0.012</td>
<td>-0.013</td>
<td>-0.006</td>
<td>+0.026</td>
<td>+0.028</td>
<td>+0.005</td>
</tr>
<tr>
<td>-0.013</td>
<td>-0.011</td>
<td>-0.029</td>
<td>-0.034</td>
<td>-0.064</td>
<td>-0.030</td>
<td>-0.039</td>
<td>-0.027</td>
<td>-0.001</td>
<td>+0.012</td>
<td>+0.030</td>
<td>+0.004</td>
</tr>
<tr>
<td>+0.025</td>
<td>+0.038</td>
<td>-0.047</td>
<td>-0.047</td>
<td>-0.058</td>
<td>-0.057</td>
<td>-0.052</td>
<td>-0.044</td>
<td>-0.011</td>
<td>+0.008</td>
<td>+0.023</td>
<td>+0.035</td>
</tr>
<tr>
<td>-0.018</td>
<td>-0.021</td>
<td>-0.013</td>
<td>-0.04</td>
<td>-0.072</td>
<td>-0.077</td>
<td>-0.076</td>
<td>-0.073</td>
<td>-0.059</td>
<td>-0.029</td>
<td>-0.006</td>
<td>+0.004</td>
</tr>
</tbody>
</table>

Figure 12

SENSL M9 ARRAY

SAMPLE 1C

ALL SENSORS MEASURED

Figure 13
3.4 Array Testing

To test the MLP test array, the board was connected to a Matrix System and then on to a PC hosting the Matrix System GUI software.

3.4.1 Basic Pixel Functionality Test

The initial test was carried out to prove that each SiPM pixel in the fabricated array functioned correctly. This was carried out using a 3x3x15mm3 LYSO scintillating crystal and the SensL Matrix system software GUI. The crystal was moved from pixel to pixel. Each time, the GUI was used to verify that the particular pixel was detecting the intrinsic radioactivity from the Lutetium in the LYSO crystal. All pixels were found to be functional.

3.4.2 Cesium-137 Source Energy Resolution Measurement

Using a Cs-137 radioactive source (that produces gamma rays of 662keV) and a 3x3x15mm3 LYSO crystal, energy resolution measurements were carried out on 9 different pixels. Figure 14 shows a typical energy spectrum using the Matrix System GUI. It was found that, for all pixels, an energy resolution of <12.5% was measurable.

![Energy Plot](image-url)