Performance Measurements of a Novel Mobile NeuroPET-CT

Jinsong Ouyang1,2, Matthew L. Keeler3, Ali A. Bonab1,2, Paul Domigan3, Xuping Zhu1,2, Thomas Brady1,2, Georges El Fakhri1,2

1Center for Advanced Radiological Sciences
Nuclear Medicine and Molecular Imaging
Massachusetts General Hospital
2Radiology, Harvard Medical School
3Photo Diagnostics System, Inc.

This work was supported in part by NIH grant # 1S10RR028110
NeuroPET-CT is a mobile full-ring PET-CT system

Brain Imaging

“Small” Animal Imaging

Pediatric Imaging
NeuroPET-CT was installed at Massachusetts General Hospital in November, 2011
NeuroPET-CT

CT
✓ 140 kVp at 7.5 mA
✓ 60 rpm, 1440 views/sec
✓ 3264 detector channels
✓ 8 axial channels

PET
✓ FOV: 25 cm in diameter
 22 cm in axial length
✓ 77700 2.4×2.4×10 mm LYSO crystals (dual-layer)
✓ 12096 SiPMTs
✓ GPU reconstruction engine
PET Detectors

Detector modules
7 x 3 x 4 = 84 blocks

Crystal and SiPMT arrays
2.4 x 2.4 x 1 cm (dual-layer)
2 cm thickness
Dedicated Brain PET

ECAT HRRT vs. NeuroPET-CT

<table>
<thead>
<tr>
<th></th>
<th>ECAT HRRT</th>
<th>NeuroPET-CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal</td>
<td>LSO/LYSO (dual-layer)</td>
<td>LYSO/LYSO (dual-layer)</td>
</tr>
<tr>
<td>Crystal Size</td>
<td>2.1 x 2.1 x 10 mm³</td>
<td>2.4 x 2.4 x 10 mm³</td>
</tr>
<tr>
<td>PMT</td>
<td>Conventional PMT</td>
<td>SiPM</td>
</tr>
<tr>
<td>DOI method</td>
<td>light decay time</td>
<td>light spread pattern</td>
</tr>
<tr>
<td>DOI Resolution</td>
<td>10 mm</td>
<td>10 mm (not implemented yet)</td>
</tr>
<tr>
<td>FOV (diameter)</td>
<td>312 mm</td>
<td>250 mm</td>
</tr>
<tr>
<td>FOV (axial length)</td>
<td>250 mm</td>
<td>220 mm</td>
</tr>
<tr>
<td>Detector modules</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Detector blocks in each module</td>
<td>9 x13 = 117</td>
<td>3x4 = 12</td>
</tr>
<tr>
<td>Crystals in each block</td>
<td>128</td>
<td>925</td>
</tr>
<tr>
<td>PMTs in each module</td>
<td>140</td>
<td>1728</td>
</tr>
<tr>
<td>CT</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Portability</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Spatial Resolution

2D-FBP

<table>
<thead>
<tr>
<th>R [cm]</th>
<th>ECAT HRRT Transverse [mm]</th>
<th>NeuroPET-CT (D) Transverse [mm]</th>
<th>NeuroPET-CT (M) Transverse [mm]</th>
<th>ECAT HRRT Axial [mm]</th>
<th>NeuroPET-CT (D) Axial [mm]</th>
<th>NeuroPET-CT (M) Axial [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.65</td>
<td>3.10</td>
<td>3.19</td>
<td>3.0</td>
<td>3.30</td>
<td>4.79</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>3.62</td>
<td>3.51</td>
<td>N/A</td>
<td>3.54</td>
<td>5.23</td>
</tr>
<tr>
<td>10</td>
<td>3.05</td>
<td>4.93</td>
<td>4.39</td>
<td>5.40</td>
<td>4.45</td>
<td>5.81</td>
</tr>
</tbody>
</table>

3D OP-OSEM (HRRT), MLEM (NeuroPET-CT)

<table>
<thead>
<tr>
<th>R [cm]</th>
<th>ECAT HRRT Transverse [mm]</th>
<th>NeuroPET-CT (D) Transverse [mm]</th>
<th>NeuroPET-CT (M) Transverse [mm]</th>
<th>ECAT HRRT Axial [mm]</th>
<th>NeuroPET-CT (D) Axial [mm]</th>
<th>NeuroPET-CT (M) Axial [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.30</td>
<td>2.40</td>
<td>2.69</td>
<td>2.50</td>
<td>3.22</td>
<td>4.7</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>2.65</td>
<td>3.03</td>
<td>N/A</td>
<td>3.54</td>
<td>5.31</td>
</tr>
<tr>
<td>10</td>
<td>2.93</td>
<td>4.10</td>
<td>3.84</td>
<td>3.40</td>
<td>4.31</td>
<td>6.18</td>
</tr>
</tbody>
</table>

NeuroPET-CT(D): direct plane
NeuroPET-CT(M): MRD=11.7 cm

Spatial Resolution

FBP

MLEM
Sensitivity
point source at the center of FOV

![Graph showing sensitivity as a function of lower energy cut in keV, with data points for NeuroPET-CT: MRD=21.5 cm and NeuroPET-CT: MRD=11.7 cm.](image)
Sensitivity
point source at the center of FOV

Sensitivity
Line source (NEMA): normalized to 70-cm

- NeuroPET-CT: MRD=21.5 cm
- NeuroPET-CT: MRD=11.7 cm

[Graph showing sensitivity as a function of accumulated sleeve thickness.
Sensitivity values range from 0.4 to 2.0%.
Accumulated sleeve thickness ranges from 0 to 14 cm.]
Sensitivity

Line source (NEMA): normalized to 70-cm

Sensitivity
Line source (NEMA): normalized to 70-cm

HR+ results: measured at Massachusetts General Hospital
Sensitivity
Line source (NEMA): normalized to axial FOV

- NeuroPET-CT: MRD=21.5 cm
- NeuroPET-CT: MRD=11.7 cm
Sensitivity
Line source (NEMA): normalized to axial FOV

HR+ result: measured at Massachusetts General Hospital
Counting Rates

![Graph showing coincidence rate vs. activity concentration. The graph includes four lines representing Prompts, Random, TRUE, and Scatter.](image)
Counting Rate

NEC rate of about 38 kHz for 3.7 kBq/ml

Green band: 100-kg patient, SUV=1.5, 200-400 MBq injection dose
Dominoid Phantom

Hole size/spacing (mm): 4.7/9.6, 3.9/8, 3.5/7.2, 3.2/6.3, 2.7/2.55, 2.4/4.7
Conclusions

- NeuroPET-CT is a mobile full-ring PET-CT scanner that achieved
 - good spatial resolution
 - high sensitivity
 - good NEC rate
- More NEMA tests, phantom and patient studies are needed in the future to assess its performance.
THANK YOU!